0 рейтинг
166 видели

В правильной четырехугольной пирамиде диагональ основания равно 8 корней из 2 см, а двугранный угол при основании 60 градусов. Найдите площадь полной поверхности пирамиды

назад (20 баллов) в разделе Геометрия | 166 видели

Всего ответов: 1

0 рейтинг
Правильный ответ

При длине стороны а диагональ квадрата всегда а√2.
Поэтому, если диагональ основания - квадрата - равна 8√2 см,сторона основания равна 8 см.
Так как  двугранный угол при основании равен 60°, сечение пирамиды, содержащее высоту - правильный треугольник. 
Отсюда апофема каждой грани равна длине стороны основания.
Апофема=8 см.
Площадь полной поверхности - сумма  площади основания и площади всех четырех граней.
S осн=a² 
S бок=4*а*h:2
S бок=4*8*8:2=128 см²
S осн=8*8=64 см
S полн=128+64=192 см²

назад БОГ (226k баллов)
10,984,878 заданий
13,471,016 решений
8,518,553 комментариев
4,909,216 пользователей